Publications
Liquid Xenon
- A 83Krm Source For Use in Low-Background Liquid Xenon Time Projection Chambers. JINST 5, P05006 (2010). (arXiv)
- Scintillation Efficiency and Ionization Yield of Liquid Xenon for Monoenergetic Nuclear Recoils Down to 4 keV. Phys. Rev. C 81, 025808 (2010). (arXiv)
- Calibration of a Liquid Xenon Detector with 83Krm. Phys. Rev. C 80, 045809 (2009). (arXiv)
- The Scintillation and Ionization Yield of Liquid Xenon for Nuclear Recoils. Nucl. Instrum. and Meth. A 601, p. 339 (2009). (arXiv)
- Preparation of Neutron-Activated Xenon for Liquid Xenon Detector Calibration. Nucl. Instrum. and Meth. A 582, p. 569 (2007). (arXiv)
- Scintillation Response of Liquid Xenon to Low Energy Nuclear Recoils. Phys. Rev. D 72, 072006 (2005). (arXiv)
Other Liquified Noble Gases
- Pulse-shape Discrimination and Energy Resolution of a Liquid Argon Scintillator with Xenon Doping. JINST 9, P06013 (2014). (arXiv)
- Radon Backgrounds in the DEAP-I Liquid-Argon-Based Dark Matter Detector. Submitted to Astropart. Phys.. (arXiv)
- Scintillation Yield and Time Dependence from Electronic and Nuclear Recoils in Liquid Neon. Phys. Rev. C 86, 015807 (2012). (arXiv)
- Measurement of Scintillation Efficiency for Nuclear Recoils in Liquid Argon. Phys. Rev. C 85, 065811 (2012). (arXiv)
- Calibration of Liquid Argon and Neon Detectors with 83Krm. Phys. Rev. C 81, 045803 (2010). (arXiv)
- Scintillation Time Dependence and Pulse Shape Discrimination in Liquid Argon. Phys. Rev. C 78, 35801 (2008). (arXiv)
- Scintillation of Liquid Neon From Electronic and Nuclear Recoils. Astropart. Phys. 29, p. 161 (2008). (arXiv)
- Operation of a Thick Gas Electron Multiplier (THGEM) in Ar, Xe, and Ar-Xe. JINST 3, P01005 (2008). (arXiv)
- Radioactive Krypton Background Evaluation Using Atom Counting. Nucl. Instrum. and Meth. A 545, p. 524 (2005). (arXiv)
- Alpha and Beta Particle Induced Scintillations in Liquid and Solid Neon. Nucl. Instrum. and Meth. A 482, p. 387 (2002).
- Liquid Helium and Neon - Sensitive, Low Background Scintillation Media For the Detection of Low Energy Neutrinos. Journ. Low Temp. Phys. 118, p. 153 (2000). (arXiv)
LUX
- Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector. Accepted to Astropart. Phys. (2014). (arXiv)
-
First results from the LUX dark matter experiment at the Sanford Underground Research Facility. PRL 112, 091303 (2014). (arXiv)
- Radio-Assay of Titanium Samples for the LUX Experiment. Submitted to NIM (2014). (arXiv)
- Technical Results from the Surface Run of the LUX Dark Matter Experiment. Astropart. Phys. 45, p. 34 (2013). (arXiv)
- The LUX Prototype Detector: Heat Exchanger Development. Nucl. Instrum. and Meth. A 709, p. 29 (2013).
- The Large Underground Xenon (LUX) Experiment. Nucl. Instrum. and Meth. A 704, p. 111 (2013). (arXiv)
- An Ultra-Low Background PMT for Liquid Xenon Detectors. Nucl. Instrum. and Meth. A 703, p. 1 (2013). (arXiv)
- LUXSim: A Component-Centric Approach to Low-Background Simulations. Nucl. Instrum. and Meth. A 675, p. 63 (2012). (arXiv)
- Data Acquisition and Readout System for the LUX Dark Matter Experiment. Nucl. Instrum. and Meth. A 668, p. 1 (2012). (arXiv)
CLEAN
- Liquefied Noble Gas (LNG) Detectors for Detection of Nuclear Materials. JINST 7, C03007 (2012).
- The Mini-CLEAN Experiment. Nuc. Phys. B Proc. 173, p. 152 (2007).
- Demonstration of Photomultiplier Tube Operation at 29 K. JINST 2, P11004 (2007). (arXiv)
- Use of Activated Charcoal for the Purification of Neon in the CLEAN Experiment. Nucl. Instrum. and Meth. A 570, p. 556 (2007).
- Spatial Methods for Event Reconstruction in CLEAN. Nucl. Instrum. and Meth. A 522, p. 504 (2004). (arXiv)
- Neutrino Detection With CLEAN. Astropart. Phys. 22, p. 355 (2004). (arXiv)
- Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector. Phys. Rev. D 68, 023005 (2003). (arXiv)
XENON
- Search for Light Dark Matter in XENON10 Data. Phys. Rev. Lett. 107, 051301 (2011). (arXiv)
- Design and Performance of the XENON10 Dark Matter Experiment. Astropart. Phys. 34, p. 679 (2011). (arXiv)
- Constraints on Inelastic Dark Matter from XENON10. Phys. Rev. D 80, 115005 (2009). (arXiv)
- Limits on Spin-Dependent WIMP-Nucleon Cross Sections from the XENON10 Experiment. Phys. Rev. Lett. 101, 091301 (2008). (arXiv)
- First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory. Phys. Rev. Lett. 100, 021303 (2008). (arXiv)
- XENON Dark Matter Search Experiment. New Astron. Rev. 49, p. 289 (2005).
Helium Molecules
- Detecting Scintillations in Liquid Helium. JINST 8, C09008 (2013).
- A Concept for a Dark Matter Detector Using Superfluid Helium-4. Phys. Rev. D 87, 115001 (2013).
- Visualization Technique for Determining the Structure Functions of Normal-Fluid Turbulence in Superfluid Helium-4. J. Low Temp. Phys. 171, p. 497 (2013).
- Observation of Crossover from Ballistic to Diffusion Regime for Excimer Molecules in Superfluid 4He. J. Low Temp. Phys. 171, p. 207 (2013). (arXiv)
- Visualization Study of Counterflow in Superfluid 4He using Metastable Helium Molecules. Phys. Rev. Lett. 105, 045301 (2010). (arXiv)
- Studying the Normal-Fluid Flow in Helium-II Using Metastable Helium Molecules. J. Low Temp. Phys. 158, p. 346 (2010). (arXiv)
- Observation of Single Compton-Electron Tracks in Superfluid Helium-4 and Trace Detection of Metastable Helium Molecules by Laser-Induced-Fluorescence Imaging. J. Low Temp. Phys. 158, p. 331 (2010).
- Metastable Helium Molecules as Tracers in Superfluid 4He. Phys. Rev. Lett. 102, 235301 (2009).
- Detection and Imaging of He2 Molecules in Superfluid Helium. Phys. Rev. Lett. 100, 025301 (2008). (arXiv)
- Trace Detection of Metastable Helium Molecules in Superfluid Helium by Laser-Induced Fluorescence. Phys. Rev. Lett. 95, 111101 (2005). (arXiv)
- Time Dependence of Liquid-Helium Fluorescence. Phys. Rev. A 67, 062716 (2003).
- The Radiative Decay of the Metastable Helium Molecule in Liquid Helium. Phys. Rev. A 59, 200-204 (1999).
Miscellaneous
- Scintillation and Charge Yield from the Tracks of Energetic Electrons in Superfluid Helium-4. JINST 7, P01002 (2012). (arXiv)
- A Consistent Dark Matter Interpretation for CoGeNT and DAMA/LIBRA. Phys. Rev. D 82, 123509 (2010). (arXiv)
- Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons. Nucl. Instrum. and Meth. A 611, p. 171 (2009). (arXiv)
- The Liquid Handling Systems for the Borexino Solar Neutrino Detector. Nucl. Instrum. and Meth. A 609, p. 58 (2009).
- The Fluid-Filling System for the Borexino Solar Neutrino Detector. Nucl. Instrum. and Meth. A 608, p. 464 (2009).
- The Borexino Detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. and Meth. A 600, p. 568 (2009). (arXiv)
- Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data. Phys. Rev. Lett. 101, 091302 (2008).
- A Scintillator Purification System for the Borexino Solar Neutrino Detector. Nucl. Instrum. and Meth. A 587, p. 277 (2008). (arXiv)
- The Production of Nitrogen-13 by Neutron Capture in Boron Compounds. Nucl. Instrum. and Meth. B 215, p. 531 (2004).
- Neutron-induced Luminescence and Activation in Neutron Shielding and Scintillation Detection Materials at Cryogenic Temperatures. Nucl. Instrum. and Meth. B 217, p. 457 (2004).
- Detecting Ionizing Radiation in Liquid Helium Using Wavelength Shifting Light Collection. Nucl. Instrum. and Meth. A 516, p. 475 (2004).
- A Long Wavelength Neutron Monochromator for Superthermal Production of Ultracold Neutrons. Physica B 344, p. 343 (2004).
- Performance of a Large-Area Avalanche Photodiode at Low Temperature for Scintillation Detection. Nucl. Instrum. and Meth. A 508, p. 388 (2003).
- Magnetic Trapping of Neutrons. Nature 403(6765) (2000). (arXiv)
- A Demountable Cryogenic Feedthrough For Plastic Optical Fibers. Rev. Sci. Instrum. 69, 3697 (1998).
- Fluorescence Efficiencies of Thin Scintillating Films in the Extreme Ultraviolet Spectral Region. Nucl. Instrum. and Meth. B 132, p. 351 (1997).
Dissertations
- Louis Kastens. Calibration of Liquid Xenon Time Projection Chambers for the Direct Detection of Dark Matter. (2013)
- Walter Hugh Lippincott. Direct Detection of Dark Matter with Liquid Argon and Neon. (2010)
- Angel Manzur. Relative Scintillation Efficiency of Liquid Xenon in the XENON10 Direct Dark Matter Search. (2009)
- Wade G. Rellergert. Detecting and Imaging He2 Molecules in Superfluid Helium by Laser-Induced Fluorescence. (2008)
- Professor McKinsey. Detection of Magnetically Trapped Neutrons: Liquid Helium as a Scintillator. (2002)